Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 12(1)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36810521

RESUMO

Monoclonal antibodies (mAbs) are highly efficacious therapeutics; however, due to their large, dynamic nature, structural perturbations and regional modifications are often difficult to study. Moreover, the homodimeric, symmetrical nature of mAbs makes it difficult to elucidate which heavy chain (HC)-light chain (LC) pairs are responsible for any structural changes, stability concerns, and/or site-specific modifications. Isotopic labeling is an attractive means for selectively incorporating atoms with known mass differences to enable identification/monitoring using techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). However, the isotopic incorporation of atoms into proteins is typically incomplete. Here we present a strategy for incorporating 13C-labeling of half antibodies using an Escherichia coli fermentation system. Unlike previous attempts to generate isotopically labeled mAbs, we provide an industry-relevant, high cell density process that yielded >99% 13C-incorporation using 13C-glucose and 13C-celtone. The isotopic incorporation was performed on a half antibody designed with knob-into-hole technology to enable assembly with its native (naturally abundant) counterpart to generate a hybrid bispecific (BsAb) molecule. This work is intended to provide a framework for producing full-length antibodies, of which half are isotopically labeled, in order to study the individual HC-LC pairs.

2.
Nat Chem Biol ; 19(1): 55-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577875

RESUMO

Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Fatores de Transcrição/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ligases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
MAbs ; 14(1): 2135183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284469

RESUMO

Detection of host cell protein (HCP) impurities is critical to ensuring that recombinant drug products, including monoclonal antibodies (mAbs), are safe. Mechanistic characterization as to how HCPs persist in drug products is important to refining downstream processing. It has been hypothesized that weak lipase-mAb interactions enable HCP lipases to evade drug purification processes. Here, we apply state-of-the-art methods to establish lipase-mAb binding mechanisms. First, the mass spectrometry (MS) approach of fast photochemical oxidation of proteins was used to elucidate putative binding regions. The CH1 domain was identified as a conserved interaction site for IgG1 and IgG4 mAbs against the HCPs phospholipase B-like protein (PLBL2) and lysosomal phospholipase A2 (LPLA2). Rationally designed mutations in the CH1 domain of the IgG4 mAb caused a 3- to 70-fold KD reduction against PLBL2 by surface plasmon resonance (SPR). LPLA2-IgG4 mutant complexes, undetected by SPR and studied using native MS collisional dissociation experiments, also showed significant complex disruption, from 16% to 100%. Native MS and ion mobility (IM) determined complex stoichiometries for four lipase-IgG4 complexes and directly interrogated the enrichment of specific lipase glycoforms. Confirmed with time-course and exoglycosidase experiments, deglycosylated lipases prevented binding, and low-molecular-weight glycoforms promoted binding, to mAbs. This work demonstrates the value of integrated biophysical approaches to characterize micromolar affinity complexes. It is the first in-depth structural report of lipase-mAb binding, finding roles for the CH1 domain and lipase glycosylation in mediating binding. The structural insights gained offer new approaches for the bioengineering of cells or mAbs to reduce HCP impurity levels.Abbreviations: CAN, Acetonitrile; AMAC, Ammonium acetate; BFGS, Broyden-Fletcher-Goldfarb-Shanno; CHO, Chinese Hamster Ovary; KD, Dissociation constant; DTT, Dithiothreitol; ELISA, Enzyme-linked immunosorbent assay; FPOP, Fast photochemical oxidation of proteins; FA, Formic acid; F(ab'), Fragment antibodies; HCP, Host cell protein; IgG, Immunoglobulin; IM, Ion mobility; LOD, Lower limit of detection; LPLA2, Lysosomal phospholipase A2; Man, Mannose; MS, Mass spectrometry; MeOH, Methanol; MST, Microscale thermophoresis; mAbs, Monoclonal antibodies; PPT1, Palmitoyl protein thioesterase; ppm, Parts per million; PLBL2, Phospholipase B-like protein; PLD3, Phospholipase D3; PS-20, Polysorbate-20; SP, Sphingomyelin phosphodiesterase; SPR, Surface plasmon resonance; TFA, Trifluoroacetic acid.


Assuntos
Lisofosfolipase , Esfingomielina Fosfodiesterase , Humanos , Cricetinae , Animais , Cricetulus , Células CHO , Polissorbatos , Ditiotreitol , Manose , Ácido Trifluoracético , Metanol , Anticorpos Monoclonais/química , Imunoglobulina G/genética , Fosfolipases A2 , Acetonitrilas , Lipase , Glicosídeo Hidrolases
4.
MAbs ; 14(1): 2122957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151884

RESUMO

Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs.Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography-mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography.


Assuntos
Antineoplásicos Imunológicos , Imunoconjugados , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais/química , Ácido Ascórbico , Catálise , Ditiotreitol , Compostos Ferrosos , Peróxido de Hidrogênio , Imunoglobulina G/química , Miosinas/metabolismo , Oxirredução , Proteína C/metabolismo , Espécies Reativas de Oxigênio , Trastuzumab/metabolismo , Trastuzumab/farmacologia
5.
J Am Soc Mass Spectrom ; 33(3): 598-602, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157447

RESUMO

Detection and characterization of cross-linked peptides of unknown chemical nature and location is challenging. An analytical workflow based on the use of 18O-labeling tryptic digestion ( Anal. Chem. 2013, 85, 5900-5908) was previously utilized to identify reduction-resistant scrambled disulfide dipeptides within an IgG that was exposed to light under forced degradation conditions ( Mol. Pharmaceutics 2018, 15, 1598-1606). The analytical workflow denoted as XChem-Finder, while effective, is cumbersome and requires extensive manual effort for detection of 18O-incorporated peptides and subsequent de novo sequencing of partial peptide sequences to aid in the identification of cross-linked peptides. Here, we provide an automatic workflow using Byos (Protein Metrics Inc.) to facilitate the detection of cross-linked peptides. The LC-MS/MS data files that were subjected to the XChem-Finder workflow that identified the scrambled disulfides were utilized as the test-case data set for the automated 18O-labeling workflow in Byos. The new workflow resulted in the detection of a photoinduced cross-linked dipeptide with unknown linker chemistry, which was subsequently identified as a cross-linked dipeptide with a novel cysteine-tryptophan (thioether) linkage. This work demonstrates that combining 18O-labeling tryptic digestion with the Byos workflow enables rapid detection of cross-linked dipeptides.


Assuntos
Dipeptídeos , Dissulfetos , Software , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cisteína/química , Cisteína/metabolismo , Dipeptídeos/análise , Dipeptídeos/química , Dissulfetos/química , Dissulfetos/metabolismo , Triptofano/química , Triptofano/metabolismo , Fluxo de Trabalho
6.
MAbs ; 14(1): 2028337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35072596

RESUMO

Anti-drug antibodies (ADA) can limit the efficacy and safety of therapeutic antibodies. However, determining the exact nature of ADA interactions with the target drug via epitope mapping is challenging due to the polyclonal nature of the IgG response. Here, we demonstrate successful proof-of-concept for the application of hydroxyl radical footprinting (HRF)-mass spectrometry for epitope mapping of ADAs obtained from goats that were administered a knob-into-hole bispecific antibody (BsAb1). Subsequently, we performed epitope mapping of ADAs obtained from cynomolgus (cyno) monkeys that were administered BsAb1 as we described in a recently published paper. Herein, we provide the first data to demonstrate the feasibility of using HRF for ADA epitope mapping, and show that both goat and cyno-derived ADAs specifically target the complementary-determining regions in both arms of BsAb1, suggesting that the ADA epitopes on BsAb1 may be species-independent.


Assuntos
Anticorpos Biespecíficos/química , Mapeamento de Epitopos , Epitopos/química , Animais , Anticorpos Biespecíficos/imunologia , Epitopos/imunologia , Feminino , Cabras , Humanos
7.
J Biol Chem ; 297(1): 100826, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34044019

RESUMO

Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody-receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting-MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab-receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab-receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc-polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG-Fc receptor biology.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores Fc/metabolismo , Animais , Células CHO , Cricetulus , Análise Mutacional de DNA , Fucose/metabolismo , Glicosilação , Radical Hidroxila/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Simulação de Dinâmica Molecular , Mutação/genética , Ligação Proteica , Conformação Proteica , Receptores Fc/química
8.
MAbs ; 12(1): 1802135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32795110

RESUMO

The neonatal Fc receptor (FcRn) is a key membrane protein that plays an integral role in serum immunoglobulin (IgG) recycling, which extends the half-life of antibody. In addition, FcRn is known to traffic antigen-bound immunoglobulins (Ag-IgGs), and to interact with immune complexes to facilitate the antigen cross-presentation of peptides derived from the immune complexes in antigen-presenting cells (APCs). Studies on the IgG-FcRn molecular interactions have primarily focused on the Fc region, and only recently have shown the potential impact of the antigen-binding fragment physiochemical properties on FcRn binding. However, the effect of the antigen physiochemical properties on IgG structure as it relates to Ag-IgG-FcRn binding is not well understood. Here we used an IgG-peptide antigen complex as a model system to investigate the structural effects of the antigen's physiochemical properties on the IgG structure, and the subsequent effects of Ag-IgG-FcRn interactions. We used hydroxyl radical footprinting-mass spectrometry to investigate the structural impact on an IgG upon antigen binding, and observed that the physicochemical properties of the antigen differentially induce conformational changes in the IgG FcRn binding region. The extent of these structural changes directly correlates to the magnitude of the affinity differences between the Ag-IgG complexes and FcRn. Moreover, the antigen's physicochemical properties differentially induce structural differences within the Ag-IgG-FcRn ternary complex. We also provide electron microscopy data that shows corroborating Fab-FcRn interactions, and confirms the hypothesis of potential 2:1 FcRn:IgG binding stoichiometry. These data demonstrate antigen-induced Fc structural rearrangements affect both the affinity toward FcRn and the trimeric antigen-IgG-FcRn complex, providing novel molecular insights in the first steps toward understanding interactions of FcRn-containing large(r)-sized immune complex.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Receptores Fc/química , Humanos
9.
J Am Soc Mass Spectrom ; 31(7): 1563-1571, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407079

RESUMO

Hydroxyl radical footprinting-mass spectrometry (HRF-MS) is a powerful technique for measuring protein structure by quantitating the solvent accessibility of amino acid side-chains; and when used in comparative analysis, HRF-MS data can provide detailed information on changes in protein structure. However, consistently controlling the amount of hydroxyl radical labeling of a protein requires the precise understanding of both the amount of radicals generated and half-life of the radicals in solution. The latter is particularly important for applications such as protein-protein and protein-ligand interactions, which may have different characteristics such as intrinsic reactivity and buffer components, and can cause differences in radical scavenging (herein termed "scavenging potential") between samples. To address this inherent challenge with HRF-MS analysis, we describe the comprehensive implementation of an internal standard (IS) dosimeter peptide leucine enkephalin (LeuEnk) for measuring the scavenging potential of pharmaceutically relevant proteins and formulation components. This further enabled evaluation of the critical method parameters affecting the scavenging potential of samples subjected to HRF-MS using fast photochemical oxidation of proteins. We demonstrate a direct correlation between the oxidation of the IS peptide and biotherapeutic target proteins, and show the oxidation of the IS can be used as a guide for ensuring equivalent scavenging potentials when comparing multiple samples. Establishing this strategy enables optimization of sample parameters, a system suitability approach, normalization of data, and comparison/harmonization of HRF-MS analysis across different laboratories.


Assuntos
Radical Hidroxila , Pegadas de Proteínas/métodos , Proteínas , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Anticorpos Monoclonais , Encefalina Leucina/química , Encefalina Leucina/metabolismo , Radical Hidroxila/análise , Radical Hidroxila/química , Oxirredução , Ligação Proteica , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Padrões de Referência
10.
Protein Pept Lett ; 26(1): 35-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30484396

RESUMO

BACKGROUND: Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION: Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.


Assuntos
Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Pegadas de Proteínas/métodos , Proteínas Recombinantes/química , Anticorpos Monoclonais/análise , Radical Hidroxila/química , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/análise
11.
Nature ; 557(7704): 196-201, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720648

RESUMO

The movement of core-lipopolysaccharide across the inner membrane of Gram-negative bacteria is catalysed by an essential ATP-binding cassette transporter, MsbA. Recent structures of MsbA and related transporters have provided insights into the molecular basis of active lipid transport; however, structural information about their pharmacological modulation remains limited. Here we report the 2.9 Å resolution structure of MsbA in complex with G907, a selective small-molecule antagonist with bactericidal activity, revealing an unprecedented mechanism of ABC transporter inhibition. G907 traps MsbA in an inward-facing, lipopolysaccharide-bound conformation by wedging into an architecturally conserved transmembrane pocket. A second allosteric mechanism of antagonism occurs through structural and functional uncoupling of the nucleotide-binding domains. This study establishes a framework for the selective modulation of ABC transporters and provides rational avenues for the design of new antibiotics and other therapeutics targeting this protein family.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Quinolinas/química , Quinolinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Alostérica/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Escherichia coli/química , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos
12.
J Am Soc Mass Spectrom ; 29(5): 961-971, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512051

RESUMO

We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Mapeamento de Epitopos/métodos , Espectrometria de Massas/métodos , Microscopia Eletrônica de Transmissão/métodos , Pegadas de Proteínas/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Células CHO , Cricetulus , Lisofosfolipase/química , Lisofosfolipase/imunologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Coloração Negativa/métodos
13.
Proc Natl Acad Sci U S A ; 115(14): 3692-3697, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555747

RESUMO

The folding and insertion of integral ß-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect ß-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize a monoclonal antibody that selectively inhibits an essential component of the Escherichia coli ß-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its ß-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outer membrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying ß-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
14.
Mol Pharm ; 15(4): 1598-1606, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29502420

RESUMO

Photostability conditions as prescribed by ICH guidelines induced highly reduction-resistant scrambled disulfides that contribute to the population of apparent nonreducible aggregates in an IgG1 mAb. Photoinduced cross-linked species were isolated under reducing conditions using an organic phase size exclusion chromatography (OP-SEC) method, followed by O18-labeling tryptic mapping to identify cross-linked peptides. Disulfide scrambling was observed within the IgG1 structurally conserved-intrachain cysteine-cysteine-tryptophan triads (Cys-Cys-Trp), and correlated with Trp-to-kynurenine (Kyn) photodegradation within these triads. We hypothesize that intrachain disulfides protect the proximal Trp within the Cys-Cys-Trp triads from photodegradation by enabling dissipation of Trp-absorbed UV energy via electron transfer to the disulfide bond. Finally, we propose three distinct mechanisms of photochemical degradation of monoclonal antibodies mediated by Trp residues.


Assuntos
Resinas Acrílicas/química , Anticorpos Monoclonais/química , Cisteína/química , Dipeptídeos/química , Imunoglobulina G/química , Triptofano/química , Sequência de Aminoácidos , Dissulfetos/química , Espectrometria de Massas/métodos , Oxirredução , Fotólise/efeitos dos fármacos
15.
J Am Soc Mass Spectrom ; 28(5): 850-858, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28255747

RESUMO

We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies. Graphical abstract ᅟ.


Assuntos
Mapeamento de Epitopos/métodos , Fragmentos Fab das Imunoglobulinas/imunologia , Espectrometria de Massas/métodos , Fator A de Crescimento do Endotélio Vascular/imunologia , Sequência de Aminoácidos , Sítios de Ligação de Anticorpos , Epitopos/química , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Simulação de Acoplamento Molecular , Oxirredução , Conformação Proteica , Fator A de Crescimento do Endotélio Vascular/química
16.
J Am Soc Mass Spectrom ; 27(7): 1139-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27103115

RESUMO

Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis. Graphical Abstract ᅟ.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Espectrometria de Massas , Difração de Raios X , Cristalização , Elétrons , Proteínas
17.
Eur J Pharm Biopharm ; 100: 38-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26707077

RESUMO

Photostability studies are standard stress testing conducted during drug product development of various pharmaceutical compounds, including small molecules and proteins. These studies as recommended by ICH Q1B are carried out using no less than 1.2× 10(6)lux-hours in the visible region and no less than 200Wh/m(2) in UV light. However, normal drug product processing is carried out under fluorescent lamps that emit white light almost exclusively in the >400nm region with a small UV quotient. We term these as ambient or mild light conditions. We tested several IgG1 monoclonal antibodies (mAbs 1-5) under these ambient light conditions and compared them to the ICH light conditions. All the mAbs were significantly degraded under the ICH light but several mAbs (mAbs 3-5) were processed without impacting any product quality attributes under ambient or mild light conditions. Interestingly we observed site-specific Trp oxidation in mAb1, while higher aggregation and color change were observed for mAb2 under mild light conditions. The recommended ICH light conditions have a high UV component and hence may not help to rank order photosensitivity under normal protein DP processing conditions.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/efeitos da radiação , Química Farmacêutica/métodos , Imunoglobulina G/química , Imunoglobulina G/efeitos da radiação , Luz/efeitos adversos , Descoberta de Drogas/métodos , Estabilidade de Medicamentos , Oxirredução
18.
Cancer Lett ; 371(2): 187-93, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26683769

RESUMO

Mutant Kras and chronic pancreatitis are the most common pathological events involved in human pancreatic cancer. It has been demonstrated that c-Raf is responsible for transmitting signals from mutant Ras to its downstream signals including MEK-ERK and for initiating carcinogenesis. The soluble epoxide hydrolase (sEH), a pro-inflammatory enzyme, generally inactivates anti-inflammatory and anti-pain epoxyeicosatrienoic acids (EETs). Herein, we have synthesized a novel compound of trans-4-{4-[3-(4-chloro-3-trifluoromethyl-phenyl)-ureido]-cyclohexyloxy}-pyridine-2-carboxylic acid methylamide (t-CUPM) via modifying the central phenyl ring of sorafenib and confirmed its dual inhibition of sEH and c-Raf by recombinant kinase activity assay. Pharmacokinetic analysis revealed that oral dosing of t-CUPM resulted in higher blood levels than that of sorafenib throughout the complete time course (48 h). The effect of t-CUPM on the inhibition of mutant Kras(G12D)-initiated murine pancreatic cancer cell growth was determined using the mouse pancreatic carcinoma cell model obtained from LSL-Kras(G12D)/Pdx1-Cre mice and showed that t-CUPM significantly inhibited this murine pancreatic carcinoma cell growth both in vitro and in mice in vivo. Inhibition of mutant Kras-transmitted phosphorylations of cRAF/MEK/ERK was demonstrated in these pancreatic cancer cells using Western blot assay and immunohistochemical approach. Modulation of oxylipin profile, particularly increased EETs/DHET ratio by sEH inhibition, was observed in mice treated with t-CUPM. These results indicate that t-CUPM is a highly potential agent to treat pancreatic cancer via simultaneously targeting c-Raf and sEH.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Genes ras , Mutação , Niacinamida/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Benzoatos/farmacocinética , Benzoatos/farmacologia , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Epóxido Hidrolases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Niacinamida/administração & dosagem , Niacinamida/farmacocinética , Niacinamida/farmacologia , Oxilipinas/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacocinética , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Carga Tumoral/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacocinética , Ureia/farmacologia
19.
J Am Soc Mass Spectrom ; 26(12): 2077-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419770

RESUMO

A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes. Graphical Abstract ᅟ.


Assuntos
Anticorpos Neutralizantes/imunologia , Espectrometria de Massas/métodos , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Anticorpos Neutralizantes/química , Sítios de Ligação de Anticorpos , Mapeamento de Epitopos/métodos , Epitopos/análise , Epitopos/imunologia , Humanos , Camundongos , Modelos Moleculares , Fator A de Crescimento do Endotélio Vascular/química
20.
MAbs ; 7(3): 540-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933350

RESUMO

Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes, and significant correlation of reactivity and solvent accessible surface area.


Assuntos
Anticorpos Monoclonais Murinos/química , Peptídeos/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Glicosilação , Camundongos , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...